

Establishment of a murine model of type II diabetes

Vinit L., Durand L., Henry E., Deconto V., Noel G.

Institut Claude-Bourgelat, Biovivo, Vetagro Sup, 69280 Marcy l'Etoile - FRANCE

Diabetes is the fourth leading cause of death induced by disease and its prevalence is increasing (Global prevalence: 382 millions or 8,3% of the world population in 2013 - 5,1 millions deaths per year linked to diabetes in 2013). As in most type II diabetic syndrome diseases, hyperglycemia and insulin-resistance are mainly involved. The development of hyperglycemic animal models with an insulinresistance is an important step in the selection of new anti-diabetication the purpose of this study is to implement a murine model of type II diabetes to evaluate the efficacy of new anti-diabetic-therapeutics.

Diet : High Fat 60% - SAFE 230HF (U8957 Version 1)

Material and methods:

Scientific Background:

Establishment of the model: Induction of type II diabetes

Animals and nursing : Male mice C57BI/6JRi

Table 1 : Stain's choice.

Benefits
Small size (cost, large
numbers of animals, easy
accommodation)
Known genetics
Obesity and type II
diabetes easy to induce
with high fat diet (HFD)
Diabetes easy to induce
No hormones influence

Nursing and suitable accommodation Bedding change twice a week (if polyuria) Group housing/ Enrichment Maintaining the health status -> ventilated unit,

filtered water, manipulation under hood

<u>Fable 2</u> : Randomization				
Groups	Diet	Streptozotocin	Animal number	
G1 - Control	A04 SAFE standard	/	4	
	maintenance diet		4	
G2 - HFD	SAFE 230HF (U8957 Version 1)	/	8	
G3 – HFD-S1		3*40mg/kg	8	
G4 – HFD-S2		5*40mg/kg	8	

Several injections of Streptozotocin (STZ) by IP administration

Picture 1: Weight difference between groups G1 and G2

Clinical characterization of the model:

General health, hydration - following 6 months

Institut

Claude-

Bourgelat

- Behavior Weight Monitoring – once a week

Biochemical characterization of the model :

- Blood glucose and insulin levels
- Oral test glucose at D 179
- Last fasting during 6H
- IP administration at T0 Glucose 30% 2g/kg
- Blood glucose level : T-15min, T+15min,
- T+30min, T+1H, T+1H30, T+2H Confirm insulin-resistance

Table 3: Biochemical characterization of diabetes

Diabetes	Blood glucose level	Blood insulin level	
Type II	Increased	Normal or	
diabetes	G > 250mg/dL	Increased	
Type I	Increased	decreased	
diabetes	G > 250 mg/dL		
Compensated			
insulin-	Normal	Increased	
resistance			

Feeding with High fat diet during 70 days induced obesity and insulin-resistance in all mice in the G2 group but no mice developed type Il diabetes. However, obese mouse model with a stable insulin-resistance was developed without mortality or morbidity. This obesity and insulin-resistance are characteristics of a pre-diabetic stage in human type 2 diabetes. This new model could also be used to experiment several human therapies for this endocrinopathy condition.

Moreover, to experiment different treatments using human cells of the diabetic patient, a murine model of insulin-resistance with obese mouse is under development. Athymic nude mice (Strain C57BL/6J), prone to obesity and induction of type 2 diabetes, will be used to develop this new model.

(1) E. Gilbert, S. Fu, D. Liu, 2011. Development of a nongenetic mouse model of type 2 diabetes, Experimental diabetes research, Volume 2011, Article ID 416254, p.12. (2) A. Petro, J. Cotter, D. Cooper, J. Peters, S. Surwit & R. Surwit, 2004. Fat, carbohydrate and calories in the development of diabetes and obesity in the C57BI/6J Mouse, Metabolism, Apr, 53(4), p. 454-7. (3) R. Burcelin, V. Crivelli, A. Dacosta, A. Roy-Tirelli & B. Thorens, 2002. Heterogeneous metabolic adaptation of C57BI/6J mice to high-fat diet, Am J Physiolo Endocrinol Metab, Apr, 282(4), p. 834-42. (4) O. Sandu, K. Song, W. Cai, F. Zheng, J. Uribarri & H. Vlassara, 2005. Insulin resistance and type 2 diabetes in high fat fed mice are linked to high glycotoxin intake, Diabetes, Aug, 54(8), p.2314-9.

